Molecular Electronics (Moletronics)

William L. Warren, DARPA – DSO

Christie R. K. Marrian, DARPA - MTO

Moletronics – What's It All About?

Replace conventional components with self-assembled functional molecules

Information Content

- One color photo $\sim 10^5$ b
- Average book ~ 10⁶ b
- Genetic code ~ 10¹⁰ b
- Human brain $\sim 10^{13}$ b
- Annual newspapers ~ 10^{14} b
- Library of Congress $\sim 10^{15}$ b
- Human culture ~ 10^{16} b
- Annual television $\sim 10^{18}$ b

Total $\sim 10^{20}$ bytes

Imagine if we had a mole ($> 10^{23}$) of bytes!!

Moletronics – An Underground Operation

Technical hurdles for "slice and dice" Si CMOS

Moletronics Overcomes Fabrication Costs for Lilliputian Computers

Moore's First Law vs. Moore's Second Law

Moletronics: Re-Inventing the IC at Molecular Densities

Goal

Demonstrate computational functionality and I/O in *scalable* molecular systems using hierarchical assembly at insanely high device densities

Moletronics Approach

The Need to Chemically Design Electronic Functionality

Yale University, Rice University

"OR" and "AND" Gates Have Been Fabricated Using Molecules

Moletronic OR Gate

2- and 3-Terminal OR Gate Address Levels

Moletronic 2-Input AND Gate

AND Gate Address Levels

Mountains Into Molehills

Conventional Si

Moletronics

Logic gates ~ 3 transistors

10 nm lines, 20 nm pitch

Crossing the Chasm from the Nano to the Micro-World

Self-Assembly

Process in which structures naturally assemble into desired patterns based on thermodynamic equilibrium

Self-Assembly Makes Aligned Arrays of 2 nm Nano-Wires

Assembly dictated by anisotropic lattice mismatch with Si

Unbelievable – 10 atoms wide, 2 atoms high, microns long!

Assembly of Cross-Bars Using Water (Hydrophobic/Hydrophilic Interactions)

- Chip border used as primary driving force for alignment
- Better than 1 µm alignment achieved across a 2.5 cm substrate
- Local alignment anticipated to be at least 10's of nm

Penn State

Hierarchical Assembly

Molecular Devices

Electronic Module

Moletronics Objective

Hierarchical-Assembly Will Reduce The Cost of Electronics Manufacturing

(3) Architecture Architecture and Defects

When a single defect could kill 'ya

When defects won't kill 'ya

- Scalable Architectures
- Defect tolerance
- Algorithm development

System Architecture Scalability

Power dissipation Input/Output Access times ...

Supercomputer

 10^{12} devices in 1 cm²

10¹² Hertz switching speed

~ 10⁴ Watts!

Nanocomputer* ~ Pentium III

 10^9 devices in 10^{-3} cm²!

10⁹ Hertz

~ 10⁻² Watts

A Molecular Computer that Needs to be "Taken to School"

Old Way: Precision Design and Build

Design - Build - Compile

New Way: Directed Design and Self-Assembly

Build - Measure - Reconfigure - Compile

Comparisons Between Si CMOS and Moletronics

Properties	Si CMOS	Moletronics
Fabrication	Lithography	Hierarchical assembly
Defined properties?	Yes	No
Defects?	No	Yes
Power	Central	Distributed
Approach	Top-down	Bottom-up Top-down

Conclusions

Molecular/nano materials Self-assembly Hierarchical assembly

Multi-state systems
Defect/fault tolerance
Algorithm development

